5.4 /5.5 Derivative of the Natural Exponential Function and exponential functions

Review: Definition: The inverse of the natural log function $f(x)=\ln x$ is the natural exponential function.

Solve for x: $6 = e^{2x}$

Graph of $y = e^x$

Domain:

Range:

End behavior:

Always increasing

Given $y = e^x$ Find f'(x) using log differentiation.

The general derivative of $y = e^u$ is

 $\underline{\text{\bf Ex. 1:}}\;$ Find the derivative of the following functions:

a.
$$y = e^{2x}$$

b.
$$y = \frac{1}{e^{\frac{x}{4}}}$$

c.
$$y = x^{1-e}$$

Ex. 2 Harder

a)
$$f(x) = 3\cos x - e^x$$

b)
$$g(x) = \frac{3}{\sqrt{x}} + \frac{4\pi}{e^2} e^x$$

c)
$$y = \sec(xe^{\sin 2x})$$

d)
$$y = \ln |x + e^{x^2}|$$

Ex. 3: Find the average rate of change over the interval from [0,2] of the function $h(x) = x^2 + e^x$ and then find the instantaneous rate of change at each of the endpoints.

Ex. 4: At what points does this function have a horizontal tangent line? $y = \frac{e^x}{x}$

- **EX. 5**: A particle moves along the x-axis such that its position can be modeled by the equation $x(t) = 3t^2 + 9t e^t$, where t represents the time in seconds, $t \ge 0$ and x(t) is meters.
 - a) Find the velocity and acceleration function.
 - b) Find the initial position, velocity and acceleration of the particle.
 - c) What is the velocity of the particle when the acceleration is zero?
 - d) When is the particle moving to the right? Justify your answer.

Theorem - Derivatives for Bases Other than e

Let a be a positive real number $(a \neq 1)$ and let u be a differentiable function of x.

$$\frac{d}{dx} \left[a^u \right] =$$

- **Ex. 6:** Find the derivative of each of the following:
- a) $y = 2^{3x}$

b) $\frac{d}{dx} [(1-2^{3x})^2] =$

c) $\frac{d}{dx} \left[x^4 4^x \right] =$

We don't use these much!!!